
User’s Guide to Program clinchor

L. Emery

July 1, 2016

1 Introduction

The program clinchor calculates the growth rates of longitudinal and transverse coupled bunch
modes in an electron storage ring. This program combines features that are found separately in
other programs such as ZAP[1], BBI[2] and PC-BBI[3]. The effort in writing another coupled
bunch program is justified further by the opportunity to implement more flexible input and out-
put methods. The input command file is written entirely in namelist commands, and the input
and output data files are in SDDS format. The postprocessing and graphics are done outside of
clinchor using the SDDS toolkits.

The method of calculation in clinchor is based on the normal mode analysis of K. Thompson
and R. Ruth[4]. The bunches are treated as point charges and therefore only rigid bunch modes
are calculated, which means Landau damping and coherent damping from short-term wake-fields
is not considered. The effect of bunch length on the strength of the wake fields generated is take
into account, however.

For those with inquiring minds, the name of the program comes from the expression “calculation
of longitudinal and transverse coupled bunch instability due to cavity higher-order mode res-
onators.”

The rest of the guide is organized in three sections. The general features are presented in the
next section. In section 3, the input commands are explained in more detail. The HOM definition
file format is explained in section 4.

2 General Features

The calculation features of the program are:

1. treatment of general bunch distributions plus randomization of charge,

2. inclusion of bunch form factor, which reduces the effect of impedance on the beam,

3. shifting of one or more HOM frequencies to the closest dangerous resonant frequency,

4. sweeping of one cavity higher-order mode (HOM) frequencies,

5. randomization of the cavity higher-order mode (HOM) frequencies for Monte Carlo simula-
tions, i.e representing changes that might occur during operations,

6. frequency-stepping (staggering) of the HOM frequencies across cavities,

7. effect of the beta function at the RF cavities for transverse motion.

1

The implementation features of the program are:

1. C language coding,

2. input file with namelist commands,

3. HOM input data stored in convenient SDDS-format files, along with flags for number of cavities
and setting to resonance,

4. output files compatible with SDDS toolkits,

These items are briefly explained below.

2.1 General Bunch Distribution

Programs like ZAP and BBI, and the theory upon which they are based can only treat symmetric
bunch distribution. Thompson and Ruth[4] developed a simple theory to calculate modes of irregu-
larly spaced bunches. Their formalism also allows the possibility of bunches of different charge. In
order to get the flexibility of having the most general bunch patterns, program clinchor has three
commands to generate a symmetric bunch pattern, a bunch train, and a general bunch pattern. See
namelist commands symmetricBunchPattern, bunchTrain, and generalBunchPattern in section
3. The bunch pattern can be read from a file using bunchPatternFromFile. Namelist command
randomizeBunchCurrent generates a random component to the bunch distributions after the beam
is defined.

2.2 Bunch Form Factor

Bunches with non-zero length have power spectral densities that decay with frequency. This will
decrease the effect of the impedances, which improves stability expectations. The program can read
a file of rms bunch lengths as a function of current for determining the form factors for each bunch
in the growth rate calculations. It is assumed that the longitudinal distribution of the bunches is
Gaussian.

2.3 Shifting of the HOM Frequencies to the Closest Dangerous Resonant Fre-

quency

A monopole HOM impedance can contribute the maximum growth rate to a symmetric longitu-
dinal mode when the HOM frequency falls on a revolution harmonic upper-synchrotron sideband.
Similarly, a dipole HOM impedance can contribute the maximum growth rate to a symmetric trans-
verse mode when the HOM frequency falls on a revolution harmonic lower-betatron sideband. An
optional data column may be included in the HOM definition file (see section 4) as a flag to force
selected HOM frequencies onto dangerous resonances. Because of the relatively low probability for
HOM frequencies to hold exactly these resonant values, this option is mostly useful in checking the
calculated growth rates against those obtained in hand calculations.

2.4 Sweeping of the HOM Frequencies

The setup command sweepFrequency allows one to sweep the frequency of a selected HOM through
some range. With a little postprocessing, a plot of the growth rate as a function of that HOM
frequency may be obtained. This is a feature borrowed from BBI. The results can be used to
cross-check with formulas of single HOM.

2

2.5 Randomization of the HOM Frequencies

This optional feature (borrowed from PC-BBI) allows one to make a Monte Carlo simulation of
the CBM growth rates using the HOM frequencies as random numbers. One can then determine the
probability of instability for the set of HOMs defined. See namelist command randomizeHOMFrequencies.

2.6 Staggering of the HOM Frequencies

The frequency stepping (staggering) of the HOM frequencies in an RF system reduces the proba-
bility that two or more HOM impedances will contribute to the same coupled bunch mode. The
staggering is accomplished by varying the cavity dimensions in uniform steps from cavity to cavity.
The staggering is expected to vary with HOM type. Staggering steps per cavity are entered as an
optional column in the HOM definition file.

2.7 Beta Functions at the RF Cavities

This concerns only the transverse coupled bunch mode calculations. All previous calculations of
coupled bunch motion that I know (ZAP, BBI) assume a constant beta function around the ring
(smooth focusing approximation). There is no reason not to use the correct beta function values
(it is not that complicated), therefore clinchor uses and requires values of the beta functions at
the RF cavities.

2.8 C Language

The usual advantages of a C code versus Fortran code applies here (as of the writing in 1992;
Fortran may catch up in future years). In C, one can dynamically allocate memory for structure
arrays and matrices as the calculation requires them. The memory is freed when it is no longer
needed. This results in a smaller executable file. C code, in general, is easily ported to other types
of computers. (So far the program has been ported to various Unix, Linux, and Windows OSs since
1992.) The code is written in a verbose style (i.e., variable names are based on un-abbreviated
physical quantity names), which makes it easy for anyone to understand the code.

2.9 Command Input File

To run clinchor one needs are least two input files. One containing the namelist commands, and
one for the HOMs definitions. The input file containing the namelist commands is specified on the
shell command line as in this example,

clinchor input.cb

where input.cb is the input file. The complete list of namelist commands and variables is given
in section 3.

Macros (tag-value pairs) can be defined on the command line for substituting strings that
appear in the input file between “<” and “>” characters. For example,

clinchor input.cb -macro=totalCurrent=102,dipoleHOMs=dipole.sdds

where tags <totalCurrent> and <dipoleHOMs> might appear in the input file.

3

2.10 HOM Definition File

The HOM data is contained in a SDDS format file rather than appearing explicitly in the input
command file. The choice of the SDDS format facilitates the organization of the HOM data.

2.11 Output files

The main output file is directed to the standard output by default. The file echoes the namelist
commands and contains some secondary physical quantities, which the user should verify to ensure
that no data entry error occurred.

Other output files are generated for specific calculations.

3 List of Namelist Commands

The namelist commands in the command input file define the whole problem: the ring parameters,
the bunch distribution of the beam, the cavity HOM impedances, the optional instructions to setup
the calculation, and the calculation itself. Each namelist commands use variables which further
specify the command.

The namelist commands are processed by subroutines from object libraries made available
publicly by M. Borland.

Below, the namelist commands in clinchor are listed and grouped according to their function:

Basic ring parameter ringParameters

Cavity HOM definitions monopoleHOMs

dipoleHOMs

Beam definition symmetricBunchPattern

bunchTrain

generalBunchPattern

bunchPatternFromFile

randomizeBunchCurrent

Option setup commands randomizeHOMFrequencies

sweepFrequency

Calculation commands doLongitudinalMotion

doTransverseMotion

The following pages describe all the namelist commands. For each command, one will find:

• the type and function of the command,

• a command definition listing, and

• a detailed explanation of the variables of the command.

The command definition listing is of the form

&<command-name>

<variable-type> <variable-name> = <default-value>

.

.

.

&end

4

The component <variable-type> can be one of three types:

• double — for a double-precision type, used for most physical quantity variables,

• long — for an integer type, used for some physical quantity variables, such as the harmonic
number, but most often for the logical flag variables, where 0 mean false and 1 means true.

• STRING — for a character string enclosed in double quotes, used most often for a filename
variable.

Note that the component <variable-type> appears in these pages only as a place-holder, and
shouldn’t be used literally in an actual input file.1 The namelist in an input file should look like
this:

&<command-name>

[<variable-name> = <default-value>]

[<array-name[<index>] = <value>,[,<value> ...],]

&end

The square brackets denotes an optional component. Not all variables need to be defined – the
defaults may be sufficient. Those that do need to be defined are noted in the detailed explanations.
The only variables that don’t have default values in general are string variables.

Array variables take a list of values with the first one assigned to the array element index. If
the index value isn’t given, then the namelist processor assumes the first array element is number
zero. The case of the letters in all namelist and variable names is important.

One will note that quantities which aren’t traditionally described in MKS units have their
units appearing explicitly in their names. This convention is used to avoid confusion about which
non-MKS units to use.

Whenever a namelist is read, it is written back to the standard output file, which is the screen
device unless the output is redirected.

In general, the namelist commands can be repeated as many times as one wishes. The reason
for repeating may be to change a variable value between calculation commands, to assemble HOM
definitions in a modular way, or to construct a more complex bunch pattern.

1macro place-holders in the input file would have explicit angle brackets enclosing a tag, as explained above.

5

ringParameters

3.1 ringParameters

• type: Setup command.

• function: Set basic ring parameters necessary to calculate synchrotron frequency, bunch
length, and so on. Once the namelist is processed and written to the standard output file, a
list of dependent quantities used in the growth rate calculations are written to the standard
output file.

&ringParameters

STRING twissFile = NULL;

double energyGeV = 0.0

double circumference = 0.0

double energyLossPerTurnMeV = 0.0

double rfVoltageMV = 0.0

long harmonicNumber = 1

double momentumCompaction = 0.0

double relativeEnergySpread = 0.0

double bunchLengtheningFactor = 1.0

STRING bunchLengthTableFile = NULL;

STRING bunchLengthUsedFile = NULL;

double longDampingTime = 0.0

double transDampingTime = 0.0

double horizontalTune = 0

double verticalTune = 0

double betaxAtRFCavities = 0

double betayAtRFCavities = 0

STRING parameters = NULL;

&end

• twissFile — If not blank, then parameters of the lattice are taken from the named file,
which is assumed to be an elegant Twiss output file. You must turn on the radiation-
integral calculation in elegant or clinchor will complain of missing data. The data taken
from the file are energy, circumference, energy loss per turn, momentum compaction, relative
energy spread, damping times, tunes, and beta functions at the cavities. For the last item,
clinchor looks for elements of type RFCA and RFCW. It averages the beta functions over all
elements found. If you wish to override the values in the file, simply give a nonzero value to
the appropriate namelist variable.

• energyGeV — Energy of the stored beam in units of GeV.

• circumference — Circumference of the storage ring in meters. Used to calculate revolution
frequency f0.

• energyLossPerTurnMeV — Energy loss per turn in units of MeV.

• rfVoltageMV — Peak RF voltage in unit of MV of cavities in ring.

6

• harmonicNumber — Ratio between external RF frequency fRF and the revolution frequency
f0. Used to determine fRF.

• momentumCompaction — Momentum compaction factor. Used to determine unperturbed
bunch length.

• relativeEnergySpread — Relative energy spread. Used to determine unperturbed bunch
length.

• bunchLengtheningFactor— Ratio of expected bunch length and unperturbed bunch length,
which might be obtained from a separate potential well calculation. This quantity doesn’t
affect the calculation coherent synchrotron frequency. The bunch lengthening factor appears
only in the bunch form factor in the effective HOM impedance expression. This bunch length
applies to all bunches in the calculation irrespective of the charge they contain.

• bunchLengthTableFile — Input file of bunch length in units of seconds as a function of
charge to be used for individual bunches in the calculation. This bunch length is used as
form factor to reduce the wake fields for a given resonator. This should be used instead of
bunchLengtheningFactor when possible.

• bunchLengthUsedFile— Output file of bunch lengths for each bunch defined in the calcula-
tion. Columns are bucket number, bunch current and bunch length. There will be one row en-
try for every bucket filled. The output files is created only when the file bunchLengthTableFile
is specified. Recommended value is “%s.bl” where the “%s” is replaced with the root name
of the command file.

• longDampingTime, transDampingTime — Coherent damping time constants in seconds for
the motions in the longitudinal and transverse planes. If one doesn’t know the coherent damp-
ing times, one may use the synchrotron radiation damping times, which are longer. Damping
rates are calculated from the damping times, and are simply added to the CBM growth rates
to give the final growth rates. When doing Monte Carlo studies, I prefer to ignore the damp-
ing rates by making them explicitly zero in the namelist by setting longDampingTime, and
transDampingTime to zero.

• horizontalTune, verticalTune — Tunes of the stored beam. Values are required if com-
mand doTransverseMotion is used.

• betaxAtRFCavities, betayAtRFCavities — Beta functions at the RF cavities. Values are
required if command doTransverseMotion is used. The transverse growth rates will scale
with one of the two values, depending on which direction is specified in the doTransverseMotion
command.

• parameters — Output file containing above parameters plus some calculated ones.

7

monopoleHOMs

3.2 monopoleHOMs

• type: Setup command. Required if the next action command is doLongitudinalMotion.

• function: Read in a SDDS format file of HOM definitions to form or add to an internal
monopole HOM data structure array. Some of the namelist variables can be used to modify
the HOM properties once the growth rate calculation starts.

&monopoleHOMs

STRING filename = NULL,

long clearPreviousMonopoleHOMs = 0,

double deQFactorMultiplier = 1 ;

double Q = 0;

double staggeringStepMultiplier = 1;

long detuneFundamental = 0;

long keepFundamentalFixed = 1;

&end.

• filename— SDDS format file of HOM definitions to be interpreted as monopole HOMs. This
is the only required variable of the namelist command. The contents of the file is explained
in section 4.

• clearPreviousMonopoleHOMs — If this logical flag is set to 1, then the current array of
monopole HOMs data structure is cleared before the file filename is read. If the flag is 0,
then the HOM information in the file filename is added to the current array of monopole
HOMs data structure. Thus there can be more than one &monopoleHOMs with different data
files.

• deQFactorMultiplier — Factor by which all Q’s in the file will be divided before running
a calculation.

• Q — All HOMs of this file will be assigned the value of Q specified here.

• staggeringStepMultiplier— If there is a frequency staggering step quantity in the HOM
file, then this factor is used to increase the staggering step before a calculation is done.

• detuneFundamental — If nonzero, then clinchor looks in the HOM list for the mode that
most closely matches the fundamental rf frequency (computed from the circumference and the
harmonic number). The program sets that HOM frequency to the fundamental rf frequency,
then detunes it to compensate beam loading.

• keepFundamentalFixed — If nonzero, then the fundamental frequency will not be random-
ized along with other HOMs. This is to simulate what is done in practise, that the funda-
mental mode tuning is kept fixed by feedback loops. This fixing of fundamental mode can be
done through the data column “Fixed” in the HOM file as well.

8

dipoleHOMs

3.3 dipoleHOMs

• type: Setup command. Required if the next action command is doTransverseMotion.

• function: Read in a SDDS format file of HOM definitions to form or add to an internal dipole
HOM data structure array. Some of the namelist variables can be used to modify the HOM
properties once the growth rate calculation starts.

&dipoleHOMs

STRING filename = NULL

long clearPreviousDipoleHOMs = 0

double deQFactorMultiplier = 1;

double Q = 0;

double staggeringStepMultiplier = 1;

long detuneFundamental = 0;

&end.

• filename — SDDS format file of HOM definitions to be interpreted as dipole HOMs. This is
the only required variable of the namelist command. The contents of the file is explained in
section 4.

• clearPreviousDipoleHOMs— If this logical flag is set to 1, then the current array of dipole
HOMs data structure is cleared before the file filename is read. If the flag is 0, then the
HOM information in the file filename is added to the current array of dipole HOMs data
structure. Thus there can be more than one &monopoleHOMs with different data files.

• deQFactorMultiplier — Factor by which all Q’s in the file will be divided before running
a calculation.

• Q — All HOMs of this file will be assigned the value of Q specified here.

• staggeringStepMultiplier— If there is a frequency staggering step quantity in the HOM
file, then this factor is used to increase the staggering step before a calculation is done.

• detuneFundamental— If nonzero, then clinchor looks in the dipole HOM list for the mode
with the lowest frequency. The program sets that HOM frequency to the closest harmonic
of the fundamental rf frequency, then detunes it to compensate beam loading. This has
applications only for a deflection-mode cavity running at the harmonic of the rf frequency.

9

symmetricBunchPattern

3.4 symmetricBunchPattern

• type: Setup command.

• function: This command defines a symmetric bunch pattern.

&symmetricBunchPattern

long startBucket = 0

long bunches = 1

double currentPerBucketMA = 0.0

double totalCurrentMA = 0.0

long clearPreviousPatterns = 0

&end.

• startBucket — Bucket number of the first bunch in the bunch train. In the case of a
symmetric bunch pattern, startBucket is the bucket number where one of the bunches is
located. Default is 0, the first bucket.

• bunches — Number of bunches in the symmetric distribution. If bunches is not a divisor
of the RF harmonic number, then a close approximation of the symmetric distribution is
generated.

• currentPerBucketMA — Current in mA for each bunch defined.

• totalCurrentMA— Total current of all bunches defined in this command. Used to determine
the current of individual bunches. Either variables currentPerBucketMA or totalCurrentMA
may be defined. If both are present, variable currentPerBucketMA takes precedence.

• clearPreviousPatterns — If this flag is set to 1, then bunch patterns defined in previous
symmetricBunchPattern or generalBunchPattern are cleared before setting the bunches of
this namelist command.

10

bunchTrain

3.5 bunchTrain

• type: Setup command.

• function: This command defines a train of equally spaced bunches of equal charge.

&bunchTrain

long startBucket = 0

long bucketInterval = 1

long bunches = 1

double currentPerBucketMA = 0.0

double totalCurrentMA = 0.0

long clearPreviousPatterns = 0

&end.

• startBucket — Bucket number of the first bunch in the bunch train.

• bucketInterval — Bunch spacing interval for a train of equally spaced train of bunches.
The number of empty buckets in between the bunches is bucketInterval-1.

• bunches — Number of bunches in the train.

• currentPerBucketMA — Current in mA for each bunch defined.

• totalCurrentMA— Total current of all bunches defined in this command. Used to determine
the current of individual bunches. Either variables currentPerBucketMA or totalCurrentMA
may be defined. If both are present, variable currentPerBucketMA takes precedence.

• clearPreviousPatterns— If this flag is set to 1, then bunch patterns defined in all previous
bunch defining commands are cleared before creating the bunches of this namelist command.

11

generalBunchPattern

3.6 generalBunchPattern

• type: Setup command.

• function: The command defines a general distribution of bunches using STRING variables
containing a list of bunch positions and current values.

&generalBunchPattern

STRING bucketSelection = NULL

STRING currentPerBucketMA = NULL

double totalCurrentMA = 0.0

long clearPreviousPatterns = 0

&end.

• bucketSelection — String containing a list of bucket numbers (long integers) for bunches
to fill. A string variable is necessary for this input because a string has no pre-set length,
while an array variable must be defined with a pre-set length.

• currentPerBucketMA — String containing a list of bunch currents (double floating point
numbers) corresponding to each bucket number specified in bucketSelection. If the vari-
ables bucketSelection and currentPerBucketMA have unequal number of entries, then the
longer one is truncated. Here is an example of the use of the string variables for generating
some arbitrary general pattern:

&generalBunchPattern

bucketSelection = "1 4 9 16"

currentPerBucketMA = "1.0 2.0 3.0 4.0"

&end.

• totalCurrentMA—Total current to be distributed evenly among bunches defined in bucketSelection.
This variable is used when variable currentPerBucketMA is not specified.

12

bunchPatternFromFile

3.7 bunchPatternFromFile

• type: Setup command.

• function: The command reads in a file to define a presumably general distribution of bunches.
This can be the bunchLenghtUsedFile output file produced by a previous run of clinchor,
since that file contains the bucket number and bunch current.

&generalBunchPattern

STRING filename = NULL

long clearPreviousPatterns = 0

&end.

• filename — Input file with column Bucket and Current (mA).

13

randomizeBunchCurrent

3.8 randomizeBunchCurrent

• type: Setup command.

• function: The command defines the randomization parameters for the bunch pattern. The
randomization is performed on the ideal bunch pattern before each growth rate calculation.
If a sweep of frequency is requested (sweepFrequency), then a new random bunch pattern
is generated for each HOM frequency value. If a HOM-frequency Monte Carlo simulation
is requested (randomizeHOMFrequencies), then a new random bunch pattern is generated
for each HOM frequency sample. Thus there are two random components in the resulting
growth rate distribution: HOM frequency and bunch population.

&randomizeBunchCurrent struct

long seed = -987654323;

long uniform = 1;

double absoluteSpreadMA = 0;

double relativeSpread = 0;

&end.

• seed — A large negative number for the random number generator. This will use an inde-
pendent generator from the HOM frequency.

• uniform — Flag for uniform distribution. Presently only uniform distribution is available.

• absoluteSpreadMA — Spread in bunch distribution in units of mA. This is useful in top-up
mode injection where the total current is constant but individual bunches have spread equal
to the charge per injection bunch. For example if a bunch pattern has 4 mA per bunch and
the spread is 1 mA, then some bunches may have current as low as 3.5 mA and others as
high as 4.5 mA.

• relativeSpread — Spread in bunch distribution in fraction.

14

sweepFrequency

3.9 sweepFrequency

• type: Setup command

• function: Sets up a sweep of the resonator frequency value of a selected HOM. The setup
takes effect only when an action command is executed.

&sweepHOMFrequency

long resonatorIndex = 0

double frequencyRange = 0.0

long points = 100

STRING filename = NULL

&end

• resonatorIndex— HOM resonator number to be swept in frequency. The numbering starts
at 0, and proceed in the order that the resonators were read in the HOM definition file or
files.

• frequencyRange — Sweep range in Hz. The range starts at the unperturbed HOM res-
onator frequency minus frequencyRangeHz and ends at the unperturbed HOM resonator
frequency plus frequencyRangeHz. If frequencyRangeHz is set to 0 or not specified, then
frequencyRangeHz=f0 where f0 is the revolution frequency.

• points — Number of points in the sweep.

• filename — SDDS file in which the results are written. The columns are the swept HOM
frequency, the maximum growth rate, and the frequency shift of the fastest growing CBM.
Recommended naming conventions: <something>.CBMFreq

15

randomizeHOMFrequencies

3.10 randomizeHOMFrequencies

• type: Setup command

• function: Sets up a Monte Carlo simulation of randomized HOM frequencies for all HOMs.
The setup takes effect only when an action command is executed.

&randomHOMFrequencies

double spread = 0.0

long seed = -987654321

long uniform = 1

long samples = 100

STRING CBMFrequencyFilename = NULL

STRING HOMFrequencyFilename = NULL

&end

• spread — The range of the random component of the frequency values is -spread to spread

in Hz. If spread is set to zero or left undefined, then spread = f0 where f0 is the revolution
frequency.

• seed — A large negative number for the random number generator. This will use an inde-
pendent generator from the bunch population randomizer.

• uniform — If flag is set to 1, then a uniform distribution for the random component of the
HOM frequencies is used. Since no other random distribution type is available in this present
version of clinchor using other values of uniform makes no difference.

• samples— Gives the number of times a following action command (doLongitudinalMotion
or doTransverseMotion)is executed with a different sampling of random HOM frequencies
for each calculation.

• CBMFrequencyFilename— File containing the growth rate value of the fastest growing mode
in each Monte Carlo sample. This file can then be histogram med with the SDDS toolkit
program sddshist. Recommended naming conventions: <something>.CBMFreq

• HOMFrequencyFilename — SDDS file containing the randomized HOM frequencies used by
each Monte Carlo sample. Type “sddsquery <filename>” for the full description of the file.
This file may grow to be very large, so be careful with this option. This variable is optional.
Recommended naming conventions: <something>.HOMFreq

16

doLongitudinalMotion

3.11 doLongitudinalMotion

• type: Action command

• function: Does calculation of longitudinal CBM growth rates using monopole HOMs and
bunch definitions currently defined. Monopole HOMs and a bunch pattern must have been de-
fined previously for this command to work. Either one of the optional commands sweepFrequency
and randomizeHOMFrequenciesmay appear before. If both appear, the last one takes prece-
dence.

If the optional command sweepFrequency is in effect, the SDDS file specified by the filename
variable in that namelist command is opened at this point.

If the optional command randomizeHOMFrequencies is in effect, the SDDS files specified by
the filename and frequencyListFilename variables in that namelist command are opened
at this point.

&doLongitudinalMotion

long normalModes = 1

long doLaplace = 0

STRING eigenvectorFilename = NULL;

STRING CBMFrequencyFilename = NULL

&end

• normalModes — If set to 1, then CBM complex frequencies are calculated, which is the only
present goal of the program.

• doLaplace — Not yet available. This solves the motion as a function of time with initial
conditions using an inverse Laplace transform, as explained in [4].

• eigenvectorFilename — Print the normal mode matrix used in the CBM frequencies cal-
culation. Recommended naming conventions: <something>.v

• CBMFrequencyFilename— SDDS file listing the complex frequencies of all the CBMs. This file
may grow very large with the Monte Carlo simulation. Recommended naming conventions:
<something>.CBMFreq

17

doTransverseMotion

3.12 doTransverseMotion

• type: Action command

• function: Does calculation of transverse CBM growth rates using monopole HOMs and bunch
definitions currently defined. Of course, monopole HOMs and a bunch pattern must have
been defined previously for this command to work. Either one of the optional commands
sweepFrequency and randomizeHOMFrequencies may appear. If both appear, the last one
takes precedence.

If the optional command sweepFrequency is in effect, the SDDS file specified by the filename
variable in that namelist command is opened at this point.

If the optional command randomizeHOMFrequencies is in effect, the SDDS files specified by
the filename frequencyListFilename variables in that namelist command are opened at
this point.

&doTransverseMotion

long normalModes = 1

long doLaplace = 0

long verticalDirection = 0

long horizontalDirection = 0

STRING CBMFrequencyFilename = NULL;

STRING eigenvectorFilename = NULL;

&end

• normalModes — If set to 1, then CBM complex frequencies are calculated, which is the
present goal of the program.

• doLaplace — Not yet available. This solves the motion as a function of time with initial
conditions using an inverse Laplace transform, as explained in [4].

• verticalDirection— If flag is set to 1, then the vertical tune and the vertical beta function
at the RF cavities (see variables of ringParameters) are used in the calculation.

• horizontalDirection— If flag is set to 1, then the horizontal tune and the horizontal beta
function at the RF cavities (see variables of ringParameters) are used in the calculation.

• eigenvectorFilename — Print the normal mode matrix used in the CBM frequencies cal-
culation.

• CBMFrequencyFilename — SDDS file listing the complex frequencies of all the CBMs. Rec-
ommended naming conventions: <something>.CBMFreq

18

stop

3.13 semaphores

• type: Action command

• function: Creates small files upon start, failure or normal exit, the presence of which can be
used as signals for scripts to monitor a batch of simulations.

&semaphores

STRING started = "%s.started";

STRING done = "%s.done";

STRING failed = "%s.failed";

&end

19

stop

3.14 stop

• type: Action command

• function: Stops the execution of the program. No variable are defined.

&stop

&end

4 HOM Definition SDDS File Format

The general SDDS format is defined by two parts, the header and zero or more data tables. The
header contains namelist commands defining, among other things, the interpretation of the data
in the tables. A table consists of a list of parameters values followed by columns of data. In
the HOM definition file, clinchor requires the presence of columns Frequency, and any two of
ShuntImpedance, Q, RoQ (the ratio R/Q). For many columns of physical quanitities the correct
units must be specified.

The allowed column names for the HOM definition file are:

• Frequency or f — Required column. Frequency in units of “Hz” or “MHz”. The program
internally converts to Hz.

• ShuntImpedance or R or Rs or Rt — Required column (see above). Shunt impedance in units
of “Ohm” for monopole HOMs, and units of “Ohm/m” for dipole HOMs.

• Q or QualityFactor — Required column (see above). Quality factor of the resonator.

• ROverQ or R/Q or ROQ — Required column (see above). Shunt impedance divided by Q. In
units of “Ohm” for monopole HOMs, and units of “Ohm/m” for dipole HOMs.

• DeQFactor or deQFactor — Factor by which to reduce the Q of the HOM after reading in
this file.

• StaggeringStep or staggeringStep or DeltaFrequency or deltaFrequency or df — Op-
tional column. Units of Hz only. Default value is 0. If larger than one, then the frequencies
of the NumberOfCavities HOM resonators are staggered by this interval.

• ShiftToResonance — Optional column. Default value is 0. If non-zero, then the frequency
of the HOMs is shifted to the closest resonance. If staggeringStep is non-zero, then the
frequency shifting is done after staggering the frequencies.

• NumberOfCavities or NCavities or Cavities or cavities — Optional parameter. Default
value is 1. If 0, then this HOM type is not used in the calculation. If greater than one, then the
HOM resonator is duplicated internally numberOfCavities times. All resonators will be sub-
jected to randomized frequencies separately (if requested by the randomizeHOMFrequencies
command.)

Here is an example of an SDDS HOM definition file for the APS ring cavities:

20

SDDS1

&description text="APS cavity longitudinal HOMs" contents="HOM definition" &end

&column name=Frequency, symbol=f, units=Hz, type=double,

description="Resonant frequency of HOM resonator" &end

&column name=ShuntImpedance, symbol=R, units=Ohm, type=double,

description="Shunt impedance of longitudinal HOM resonator" &end

&column name=Q, symbol=Q, units="", type=double,

description="Q of longitudinal HOM resonator" &end

&column name=NumberOfCavities, symbol=N$bcav$n, units="", type=long,

description="Number of cavities for each HOM" &end

&column name=StaggeringStep, units=Hz, type=double,

description="Staggering frequency steps between cavity HOMs" &end

&column name=ShiftToResonance, type=long,

description="flag causes automatic shift to resonance after Staggering" &end

&data mode=ascii, noRowCounts=1 &end

558.7e6 13.6e6 68e3 16 -0.08e6 0

761.1e6 25.6e6 53e3 16 -0.7e6 0

962.0e6 6.1e6 54e3 16 -1.2e6 0

1017.4e6 2.6e6 41e3 16 -1.7e6 0

1145.1e6 2.7e6 92e3 16 -1.5e6 0

1219.2e6 3.6e6 41e3 16 -1.9e6 0

5 Example Files

Example clinchor input files, runs of clinchor and post-processing commands are included with
the distribution of clinchor. The examples can be run with the script files provided.

6 Acknowledgment

The structure of the program is modeled after the program elegant written by M. Borland. The
program also links to libraries written by M. Borland.

References

[1] M.S. Zisman, S. Chattopadhyay, and J.J. Bisognano, “ZAP User’s Guide,” LBL 21270,
Lawrence Berkeley Laboratory, December 1986.

[2] B. Zotter, “BBI - A Program to Compute Bunch Beam Instabilities in High Energy Particle
Accelerators and Storage Rings,” CERN LEP/TH 89-74, CERN, 1989.

[3] J. Hagel and B. Zotter, “PC-BBI, a Program to Compute Bunch Beam Instabilities on a PC,”
CERN SL-AP 90-62, CERN, 1990.

[4] K. Thompson and R. Ruth, “Transverse and Longitudinal Coupled Bunch Instabilities in Trains
of Closely Spaced Bunches,” in Proceedings of the 1989 IEEE Particle Accelerator Conference,
p. 792, 1989.

21

Figure 1: Example of histogram

Figure 2: Examples of postprocessing of the frequency list file

Figure 3: Example of HOM frequency sweep

22

